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The concept of the thermal boundary layer in the entry region of a heat exchanger with developed 
velocity profile serves to calculate in an approximate manner the temperature tJ.eld. Several 
approaches to the solution of the thermal boundary layer are discussed. 

In the papers1.2 we have dealt with the problem of heat transfer in an annular, circular or a flat 
duct, on the walls of which a temperature step is imposed (Fig. 1). In dimensionless form this 
problem (the Gratz- Nusselt type) may be stated as follows 

al a2t 1 - ;c at 
w(y) 8z = ay 2 - 1+ y(1 - x) BY ' 

with the boundary conditions 

t = 1 for z ~ 0 , t = 0 for y = 0 and z ;;;; 0 , 

at 
- = 0 for y = 1. oy 

(1) 

(2), (3) 

(4) 

Our attention was focused on the question of the amount of heat transferred in the exchanger. 
However, there are certain arrangements in which the heat transfer is described by the same 
equation and the boundary conditions but, in addition to the heat transfer, there is another process 
going on (such as e.g. chemical reaction) which is strongly affected by temperature. Then the need 
arises for the knowledge of the thermal field and, simultaneously, the problem of how to describe 
the temperature distribution. By exact solution of the set l (1) - (4) we obtained the relation 

t(y, z) = 1: ci Yi(y) exp ( - bfz) , (5) 
i=l 

which is unfortunately rather awkward at low values of z owing to slow convergence of the series. 
The difficulties do not concern the evaluation of the series proper but rather the neccesity to tabu
late a great number of functions and constants. 
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In this paper an approximate method of solving the heat transfer equation will be 
presented which enables the temperature distribution to be described in a simple 
and illustrative manner without undue loss of accuracy. 

THERMAL BOUNDARY LAYER 

The equation of heat transfer without the term for axial conduction (1) possesses 
a similar structure as the Prandtl equation for a twodimensional velocity boundary 
layer3. There is no feed-back in axial direction and thus the step change in boundary 
conditions results also in formation of the boundary layer into which the response 
to the change is localized. This fact may be demonstrated by the example of the 
temperature field calculated from Eq. (5) for a newtonian flow through a pipe when 
x = 0 and w(y) = 4y - 2y2, shown in Fig. 2. It is seen that for small z there exists 
region practically unaffected by the change of wall temperature and a region of inten
sive heat transfer - the region of the boundary layer. It should be noted that this is 
not specific for the selected example; qualitatively same results were obtained by sol-
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FIG. 1 

Heat Transfer Problem under Discussion 
a) Sketch of heat transfer in an annular 

duct. On the waH of radius R the temperature 
jumps from To to T w; the waH of the radius 
xR is insulated. b) Dimensionless formula
tion of the problem. Into the same form 
transform the cases: x = 0 (tube), x = 1 
(flat duct with heat exchange on one waH 
or both) and x > 1 (annular duct with heat 
exchange on the inner surface). 
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FIG. 2 

Temperature Field in a Tubular Heat Ex
changer with Constant WaH Temperature 
under Newtonian Type of Flow 

Isotherms belong to following dimension
less temperatures: t: 1 1; 2 0'999; 3 0'99; 
40'9; 50'5; 60'2; 70'1; 8 O. Region: A un
affected by wall temperature, 8 of marked 
heat transfer (boundary layer); C of vanishing 
temperature profile. 
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ving4 the Gratz-Nusselt problem for a variety of velocity profiles w(y), and geo
metric parameters x. Thus we are justified to state that: To every arbitrarily small 6 

there exists a nondecreasing function Yo = Yo(Z, 6) defined in the domain 0 ~ Z ~ Z.(6) 
and such that for y = yo(Z, 6) t(y, z) = 1 - 6. Thus we assume that the lateral 
temperature profile, t(y), may be approximated, for given z ~ Ze' by two functions: 
- for y ~ Yo(z) by function t(y) of which we only know so far that it should satisfy 
the foHowing conditions 

t < 1 and ot/oy > 0 for o ~ y < Yo, (6) 

t = 1 and ot/oy = 0 for y = Yo, (7) 

t = 0 for y = 0; (3) 

for Yo ~ Y ~ . 1 by function t = 1. (8) 

Adopting this approximation it remains to solve the problem of the boundary layer, 
i.e. to find functions Yo(z) and t(y, z) (for y ~ Yo) which satisfy best the original 
set of Eqs (1) - (4). Additional (derived) results of the solution are the length of the 
inlet region Ze (which is the minimum value of Z for which Yo = 1) and the average 
mixing temperature 

, fYO(Z) 
Im(Z) = 2/(1 + x) {o t(y, Z) w(y) [1 - y(l - x)] dy + 

+ II w(y) [1 - y(1 - x)] dy} , 
yo(z) 

(9) 

or other integral characteristics of heat transfer 2
. 

SOLUTION OF THE EQUATION FOR THE THERMAL BOUNDARY LAYER 

The known methods for solution of the velocity profiles.in the vicinity of submerged 
bodies3 may be used also for the thermal boundary layer. The simplest is the one 
assuming similarity of the temperature profiles in the boundary layer 

t(y, Z) = t(1]) , where 1] = Y/Yo(Z) . (10), (11) 

On taking an arbitrary fmiction t(1]) which satisfies conditions (3), (6) and (7), i.e. 
teO) = 0, t'(l) = 0 and t'(1]) > 0 for 1] < 1 we can calculate the axial coordinate 
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corresponding to a given thickness of the thermal boundary layer from the relation 

(12) 

expressing the balance on heat. Since the functions tm(yo) and z(Yo) are inversible, the 
required result, i.e. the description of the thermal field , may also be obtained by means 
of functions Yo(z), t(1]) and tm(z). The methods of the variation calculus based on the 
theorem5 of minimum entropy production may be used eventually for the calcula
tion of z(Yo) instead of Eq. (12). An improved method of the thermal boundary 
layer, which shall be described in the following, differs from previous methods 
in that it does not require any assumptions regarding the similarity of temperature 
profiles. It utilises the fact that the set of Eqs (1) together with the conditions (2), 
(3) and (8) in the domain 0 ;£ y ;£ Yo(Z 1); 0 ;£ Z ;£ Z 1 ;£ Ze (in Fig. 3 shadowed) 
forms again the Gditz-Nusselt type of problem. From the viewpoint of thus formulated 
the Gratz-Nusselt problem the entry region is terminated in the point ZI and, con
sequently, Z 1 has here the same meaning as Ze in the original problem. For Z = Z J 

it is therefore possible to approximate the temperature profile by the first eingen
function of the Sturm-Liouville problem 

y~' + (1 - x)/[1 - y(l - x)] Y; - w(y) biY1 = 0 , (13) 

where b~ is the smallest eigenvalue satisfying both Eq. (13) and conditions 

Y1 = 0 for y = 0, Y; = 0 and Y1 = 1 for y = Yo' (14), (15) 

FIG. 3 

Entry Region of Heat Exchanger 
Broken line shows the limits of the boundary layer. The boundary conditions in the shadowed 

area are those of the Gratz-Nusselt problem. 
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Obviously, Y1 is a function of a single variable, y, and depends, similarly as b;, 
on parameter Yo. The temperature in the boundary layer is approximated by the 
relation 

t(y) = YtCJI). (16) 

lUhe function Y(y) and the value bi for a given Yo are found one can calculate the 
appropriate coordinate zion the basis of relations equivalent to Eq. (5) as 

(17) 

making use of the following relations: 

f
YO 

C1 = IjA 0 [1 - y(1 - x)] w(y) Y1(y) dy, (18) 

f
YO 

b; = IjA 0 [l - y(l - x)] y;2(y) dy , (19) 

where f
YO 

A = 0 [1 - y(l - x)] w(y) ¥Ny) dy . (20) 

The functions Yo(z), t(z, y) for y ~ Yo etc. can be obtained again by appropriate 
inversion of known functions. The knowledge of the function Y1(y) and the values 

'·0 r----,-------,-"="=r-----,------,--==----,-----=---. ... ---

0-5 

0-8 0·4 o·a 0·4 o·a 

FIG. 4 

Thermal Boundary Layer at Heat Transfer into a Newtonian Liquid (w(y) = 6y - 6y2) in a Flat 
Duct with Temperature Step on One Wall 

Solid line shows the temperature profile calculated assuming the boundary layer; broken line 
is the exact solution. a) Limiting case for the neighbourhood of entrance of the exchanger (z ->- 0). 
The thickness of the boundary layer is Yo = 1·527z1/ 3 • The exact solution is given by Eq. (28); 
b zl = 0·0248; YO(zl) = 0·5; C zl = 0·0912; YO(zl) = 1. 
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c( and bi for Yo = 1 permits description of the temperature field for Z ~ ZC. An ap
proximation of the series (5) by its first term is very accurate in this region 2

. 

A solution of the Gratz-Nusselt problem given by Eq. (1) and the boundary conditions (2) to 
(4) may be written in the form (5). Since2 bf + 1 < b~ and ci + 1 < c i we have that 

lim t(y, z) = c1 Yt(y) exp ( - biz). (21) 

If the relation (21) is extrapolated toward smaller values of z one obtains meaningless results 
t(l , z) < 1 if z < In ctfbi. In the point ze = In ct/bi we obtain by extrapolation that 

The temperature calculated from Eq. (22) deviates from the exact solution (5) in this point by 

M = Y1(y) - I(y, ze) = - i:. ci Yi(y) ci b ,2/ b ,2 
i=2 

and the deviation reaches maximum at the point y = 1 

00 

/l./ s = - L c
i
ci b ,2/b ,2 . 

i = 2 

(22) 

(23) 

(24) 

This deviation was evaluated numerically for a number of geometric arrangements and velocity 
profiles. The maximum deviation was found in the case of piston flow in a pipe Ms = - 0·088. 
In the case of real newtonian or non-Newtonian flows we cannot commit an error greater than 5% 
by usi ng Eq . (22) instead of (5) and the error of determination of the average mixing temperature 
does not even exceed 1 %. 

Calculation oj the First Eigenfunction 

The methods for calculation of the eigenfunctions are ample and can be divided into four fol
lowing groups: 1. In some cases the function Y t ty) can be expressed in terms of tabulated func
tions. In the case of the piston flow in a flat duct, Y. = 1, lI'(y) = I. it is an elementary function 

Yo 

0·5 

FIG. 5 

The pJot of Function Yo(Zt) for Given Case (Fig. 4) 
°0~------~0.-O~-------0~D~8· 
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which may serve for comparison e.g. the result of integration in Eq. (9) tm = 1-1 ' 161(z)1{2 
for z ~ 0'0979, with the result of the exact method6 tm = 1-1'128(z)1{2 for z -->- O. In other 
examples of the piston flow Y1 (y) can be found as a combination of the Bessel functions6 . A note
worthy situation arises with a linear dependence w(y) = woY in the boundary layer for which 
we obtain4 

where 

Y1 = 0'856(1 {2 J 1{3(0'2687(3{2), for ( ~ 2'776 

(= y(wO)1{3/z l /3. 

Relation (26) may be compared with the exact solution of Leveque 7 , 8 

f
°-481 ~ 

t = 1·120 ° exp (- e) d~, for ( - > 0 . 

(26) 

(27) 

(28) 

The courses of the functions (26) and (27) are shown in Fig. 4 plotting t in dependence on 17 = 

= ( /2'776. 2. The method used almost exclusively in pre-computer era9 ,lO, which rests in ex
panding the functions w(y) and Y1 (y) into a polynomial. On comparing the terms with the same 
power of y in Eq. (13) a set of linear equations is obtained the roots of which are the coefficients 
of polynomials of the eigenfunctions and the eigenvalues. The method is suitable for the calcula
tion of the first eigenfunction providing that the velocity profile is expressed by a finite polynomial, 
although even then the eigenfunction must be described by a polynomial of about 10 terms to 
achieve accuracy of 1%. Thus here too it is convenient to use some standard (matrix inversion) 
computer routine. 3. The method. based on the variation calculus, which usually utilize the fact 
that the solution Y1 (y) of the Sturm-Liouville set of Eqs (13)-(15) is on the extremal of the 
functional . 

f
ro 

I(Yi, Y1 , y ) = 0 {[1 - y(1 - x)] Yi2 - biw(y) [1 - y(1 - x)] Yi} dy, (29) 

where bi is the functional given by Eqs (19) and (20). To find the extremal 

OJ = 0 (30) 

one can use for instance Ritz's method consisting in expressing Y1 (y) as a series of functions 
Fj(y) 

(31) 

which all satisfy the boundary conditions 

(32), (33) 

If Eq. (30) is to hold such values a j must be found for which 

aI/aaj = O. (34) 

To diminish the number of functions Fj(y) necessary for a satisfactory convergence of the series 
(31) it is convenient to choose the orthogonal functions with the weight w(y) [I - y(1 - x)). 
This means that we request that 
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(35) 

A combination of two such orthogonal functions (31) with one and two local extremes in the 
domain 0 ~ Y ~ Yo usually suffice4 ,ll for a requested accuracy of determination of Y 1 (y). 

If the velocity profile is described by a polynomial, these functions may also be taken as poly
nomials and for the solution of the set of Eqs (34) we then do with the simplest mathematical 
means. Quite generally it may be stated that the approximate approaches based on the variation 
calculus lead very rapidly to reliable results. 4. For a numerical solution it is convenient to avoid 
the Sturm-Liouville boundary value problem and to change it into the Cauchy initial value 
problem. In such a case we integrate the differential equation (13) with the initial condition 
YeO) = 0 and arbitrarily selected values bi and Y'(O) until reaching the point y = Yo in which 
the first local extreme Yo = 0 is found. (If the value y = 1 was exceeded we had taken bi too 
small). If Yo ~ 1, the appropriate first eigenfunction is given by the relation 

(36) 

and the appropriate coordinate z is determined with the aid of Eqs (17) - (20) . The presented 
method enables the first eigenfunction to be determined even in cases when the velocity profile 
is not described by a simple function. The concept of the boundary layer enables to describe 
in an illustrative manner the temperature pattern in the entry region of a heat exchanger (Figs 4,5). 
The results of the heat transfer in ducts with a single heat exchanging wall, which are solutions 
of the set of Eqs (1) - (4), may be used for description of the temperature field in the entry region 
with heat exchange on two walls since both boundary layers will not affect each other initially. 
Also other examples (e.g. when thermal fluxes on the walls are specified may be modified by the 
above presented method. The assumption of the boundary layer provides also an approach to the 
solution of heat transfer in a liquid with temperature dependent viscosity 1 2 

. 

UST OF SYMBOLS 

Dimensional quantities 

Cp specific heat 
k thermal conductivity 

radial coordinate 
R radius of the wall with temperature step 
T temperature 
To inlet temperature of liquid 
Tw temperature of heat exchanging surface 
U average velocity of liquid 

local velocity of liquid 
axial coordinate 
density 

Dimensionless quantities 

0i coefficient of series (20) 
A functional defined by Eq. (20) 
bi eigenvalues 
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C j coefficient of series (5) 
F function satisfying boundary conditions (32) and (33) 

= (T - Tw)/(To - Tw) temperature 
t m mean mixing temperature 
I1t error caused by approximation of temperature profile (23) 
!lts maximum!lt 

= v/U velocity 
wa = dw/dy at the point y = 0; velocity gradient on the wall 
y = (R r)/(R - xR) lateral coordinate 
Yo thickness of the thermal boundary layer 
Y auxiliary function satisfying Eq. (13) 
Yj eingenfunctions 
Yi. Yl' derivatives of Yj with respect to y 

= xk/«(lcp UR2 (1 - :v.2» axial coordinate 
ze length of entry region 
Z 1 selected value Z ~ ze 
i5 variation 
, variable defined by Eq. (27) 

normalized variable for the boundary layer (11) 
% geometric parameter (Fig. 1) 
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